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ON THE FORMATION OF SHOCK WAVES IN LAVAL NOZZLES* 

A.L. BREZHNEV and I.A. CRERNOV 

Inviscid gas flows are investigated in the case when in plane and axisymmetricLavai 

nOZ.ZhS a weak discontinuity propagates along the characteristic which reaches the 
nozzle center. Sufficient conditions of shock wave formation at the nozzle center, 

disclosedbythe first correction of the continuous self-similar solution, are ohtain- 
ed. 

The inverse problem of the Lava1 nozzle consists of constructing in some neighborhood of 

the nozzle longitudinal axis a flow conforming to a given velocity distribution along that axis 
and, in particular, to determine the shape of the nozzle walls. It must be pointed OLIN that 
not every velocity distribution is admissible. Frankl' had established /l/ an inequalitywhich 
determines continuity conditions for velocity distribution along the axis for which accelera- 
tion has a finite discontinuity at the nozzle center. It was shown in /2/ that when the dis- 
continuity exceeds the value defined by that inequality, first, a shock flow is generated with 
a compression shock at the nozzle center and, then at some critical magnitude of the discontin- 
uity, the flow disintegrates. The condition of shock flow existence in plane and axisymmetric 

nozzles in the class of self-similar solutions of the transonic equation was determined, and 

it was shown that the reason of shock wave formation is the prolongation of the nozzle transi- 

tion part when its throat lies downstream of its center. 

The effect of higher approximations in axial velocity distribution on the properties of 

flow are investigated in this paper. It is shown that a shock wave may be formed also in the 
case when the principal term defines a continuous self-similar flow. Similar situation was 

earlier considered /3,4/ in the problem of a weak discontinuity reflection from the sonic line 
in connection with the problem of shock wave generation. 

The results obtained in this investigation have a very simple physical meaning: flows in 

nozzles with acceleration in the direction toward the outlet remain shock-free in the class of 

functions considered here. The last of continuous self-similar flows in which the disclosure 

of a shock wave is possible in higher approximations is an exception. As regards fiows with 

Local supersonic zones locked on the channel axis (LSZ) they are unstable at small perturba- 

tions, and ultimately are easily transformed from shock-free to shock flcws. 

1. Transonic flows of gas are defined by the Kbrmbn approximate system of equatrons 

---IIll, ['a, my-'f. .: 0. ll,, .' L', 0 [l.l) 

where I. y are dimensionless Cartesian or cylindrical coordinates, u, v are dimensionless veloc- 

ity components of a uniform sonic stream perturbations, and parameter 0, 0 (m :- 1) in a plant 

(axisymmetric) flow. 
To investigate the motion of gas in a Lava1 nozzle we set up the Cauchy prcbiem: findthe 

solution of system (1.1) which on the axis of symmetry !J U satisfies the conditions 

a(2, 0) = A#$ + A, ) 2 I’+b 1.. . I<0 il.21 

L1 (I, 0) = n,z ! R,z’+k - . LT >A 0 
u (z, 0) = 0 

where k,Ai, B, are arbitrary constants with A,> O,k>O, and /2/ 

rs < R,iA, .:; 1 (r5 = -2 (1 - o) - 2-'(3 .+_ 1/q @) 

We denote the limit characteristic which reaches the nozzle center by co-. We investi- 

gate below the motion of gas when a weak discontinuity arrives along the characteristic c,,- in 

the nozzle center. We denote the region between the negative semiaxis X and characteristic 
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C,,- by the numeral 1. If the flow as no shock wave issuing from the nozzle center, there 

exists a second limit characteristic c@+. The region between characteristics c,- and c,' 

will be denoted by the numeral 2, and the outlet section of the nozzle between C,,+ and the 

positive semiaxis 2 by 3 . If a shock wave passes through the channel center, it separates 

regions 2 and 3. 
In the case of shock wave formation functions U,V satisfy at the shock the supplementary 

boundary conditions /4/ 

Z(~?x/dy)~ = u3 + I.+ (ug - us) dxldy = us - vg (1.3) 

where 2 = s(y) is the equation of the wave front and the subscripts denote the unknown functions 

on different sides of the shock. 

2. Let us present some results from /1,2,5 -?/ concerning the particular case of bound- 

ary conditions (1.2) 

u (z, 0) = A,x, 2 < 0, u (2, 0) = &s, z > 0, (2.1) 
v(t, 0) = 0 

The respective Cauchy problem (l.l), (2.1) has the self-similar solution 

u = YVO (C)t v = Y%, (0, 5 = zy-* (2.2) 

The substitution of (2.2) into (1.1) yields a nonlinear system of ordinary differential 
equations 

(4P - fo) fo' - 4 5fo + (3 f w) go = 0 (2.3) 

Zf, - 25fo’ - g,’ = 0 

System (2.3) has singular points 5 = z-and 5 = ~,that correspond to the limit character- 
istics C,- and C,+. We denote constants z_, z+ by 2,. At point 5 =s, we have the equality 

4521‘fO(5) = 0 (2.4) 

Classification of the various modes of self-similar flow is conveniently carried out us- 
ing curves of function f,,(c) which show the dependence of velocity u on x alongthe line y = eonst 
(Fig.1). Flows in regions 1, 2, 3 are represented by branches Qt,Qz,Q,,The letter p denotes 
the parabola f. = 45*on which functionf,(c) can have discontinuous derivatives. The points of 
parabola P are singular points of the node type for system (2.3). Integral curves reach P 
either at the slope fo’ = ylzc (yl = -4 (1 - w) - (2 + 2 1/T) o) or fo’ = yzzc (yz = 2(1 - (11) - (2 - 2 v%) 
w). The approach of thecurve to the parabola at slope f aI = ylzei.s indicated by an arrow. 

The structure of the self-similar solution depends on the ratio of constants B,JAe. 
When B,IAo = t,mode 1 obtains in the nozzleinwhich the flow is continuous and analytic 

along limit characteristics, and when r3 < RJ-4, <I (ra = 4-r (1 - o)+ 2-l (7 - 3j/.s)o) we have 
mode 2 of continuous flow with weak discontinuities on C,- and CO+. 

When Be/A0 = r3 we obtain the last of continuous flows (mode 31, and when O,< H,/A,(r,, a 
compression shock appears in the flow (mode 4). 

Fig.1 

The flows l- 4 are distinguished by that the flow velocity at 
the nozzle outlet is supersonic and in the limit case of B,/A,= 0 
it is sonic. In modes 5-8 LSZ appear at the channel wall and 
merge on the axis. 

When r5 ( B,!A, < r, (r, = -2-I{ 1 - co) - 2-I (3 - c/z) w) the flow 
in LSZ is shock-free (mode 6). 

Modes 5 (B,/A, = r,)and 7 (B,/A,, = r;)are limit ones for contin- 
uous flow in LSZ. 

When r7< &/A,<0 we have mode 8 with the formation of a 
compression shock in LSZ. 

3. Let us construct higher approximations of the self-similar 
flow (2.2) which would result in velocity distribution (1.2) onthe 
nozzle axis, 

If we apply, as in /9/, the conventional coordinate expansion 
in powers of Y with coefficients dependent on 5, we obtain an in- 
crease in the coefficients of singularities in the neighborhood of 

point 5 = z,. Such solution is not valid near the limit characteristic C,. This singularity 
is explained by the deviation of the non-self-similar characteristic C, from the line 5 = 2,. 
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To obtain a uniformly suitable solution we use the method of deformed coc;rd:natt:s /(?,I I:, 
which the solution is represented in parametric form 

u = y* Ifo(z) A Y% (2) + jr'hf2(Z) -L . ..I c>.;: 
c’ - y” Igo (z) .- y?‘g* (z) 1 y’“‘g? I:) .,_I 

6 = z -_ yZkE, (z) j- y’q,, (z) -; 

where z is the new independent variable. The value i =: s,determines the limit characteristic 
c 0' The deforming functions $,() z are selected so that singularities in representative veloc- 

ities f*(z), .gi(z) do not increase. 

TO determine f,. g, (i = 1, 2. ..) it is necessary to solve the recurrent system or ordinary 

differential equation 

L, (f,. g,) = (4z* - fo) E,‘f,’ + (2 -1. 2k) (2fo - ctzf,‘) {, 

111, (f,. g,) = - 21,5,’ -- (2 .: 2k) 5*.f,’ 

.L? (f?. &) = (f,’ - E,‘i,‘) l(4z’ - fo) j,’ - (2 -+ 2k) 425, t 

I,1 + h-ST, M, (f.>. gz) =- NST 

L, c (42’ - fo) ,fj’ - I!,’ :- 2z (2 1. 2ki)lji r (3 +- o + 2ki) g, 

M, s -225,’ .I- (2 -1 2ki) !, - gI’ 

where NST denotes terms which do not induce the growth of singularities in t2,gz as comparedto 

1,. g1. 
System (3.21, (3.3) has a singular point z = zc. since when z i, the equality (2.4) is 

valid. 

Let us determine the behavior of functions f,,g,,t, in the neighborhood of * . Since at 

that point these functions have discontinuous derivatives, it is necessary to cckider separat- 

ely the left- and right-hand sides of point z, neighborhood. For definiteenss we shall con- 

sider the left half (t-•*i, - 0). 

We represent the solution of system (3.2) in the form 

f, (2) = F, (2) i fo' (2% (2). RI (I) = G, (2) + g,' WE, (z) (3.4) 

where F,, G, is the solution of the homogeneous system 

L, (F,, C,) = 0, M, (PI. C,) ; 0 (3.5) 

Second terms in (3.4) represent the particular solution of the inhomogeneous system (3.2). 

We expand function F,(Z) in series with z-+t, - 0 

F, (z) = F,, -: F1,A .-. .._ : F,, 1 A I” -. . ,I -.-; z--z, (3.6) 

A similar solution holds for C,(z). The coefficients of series (3.6) linearly depend on 

constants A,, R, in (1.21, which becomes evident after the transformationof (1.2) intoconditrons 

for functions /,,g, as z-t.& P. The singularity index FL of the first term of the irregular 

part is calculated using formulas 

.U = ('12 -j- 2k/3) (I - O) + o 115 - 5 l/s + 2k(.j - vj,]! 10 (3.7) 
if fo' (Z, - 0) -= y,zc 

p = (2 -i_ 4k!3) (1 - w) f w 115 j-5 V'S 1% (5 + v-5)]/ 10 (3.8) 

if fO' (z~ - 0) = Y!Z, 

Let us determine the expansion of function g,(z) as i -+Z, -0. Analysis of the right-hand 

sides of system (3.31 show that the singularities in f *, gz do not increase in comp.arison with 

j,, g,,if we set 

(422 -- f#)) 5,’ - (2 .I. 2k) 4z;, + !, F 0 (A) (3.9) 

Let us first assume that in expansion (3.6) the singularity index('< P< 1. Then from 

(3.91, (3.4), and (3.6) follows that 

5, (2) = 5,, -1 51, I A I“ -. 0 (A) (1.10) 
E,, = F,,![4z, (2 .L 2k) - j,’ (3. -- 0)l ( i . ? 1: 

E ,,, -: F,,!IGz, (1 .-.. <<I) : 4 f/s;, (01 
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Since the coefficients F,,, F,, are some linear combinations of constants A,,B,, hence it 

follows from (3.11) that the dependence of &,, &,, on AX, 8, is also linear. 
If p>i, then as z-+z,-0 

r, (2) = F, 10 $0 (A), P > 1 (3.12) 

El(s) = EN + El&n I A I +-O(A), p = 1 (3.13) 

AS shown by the analysis of the uniformly valid Solution (3.1) , either a finite discont- 
inuity of the first velocity derivatives with respect to coordinates, or a weaker singularity 
is formed on the limit characteristic co. 

4; Let us show that the first correction of solution (3.11 can result in the formation 
of a limit line in the neighborhood of C,,, in spite of the principal self-similar term of 

(2.2) defining a velocity field without it. 
Let us consider the Jacobian of transformation of variables (5, y)-(z, y) 

J = a (5, yw (2, y) = agiaz 
Taking into account (3.1) we obtain 

J = 1 + Y”~EI’ (4 + Y%’ (4 + . . . (4.1) 

We shall investigate J in the neighborhood of C,, making z approach Z, - 0 withy=const. 
Let us first consider the case of 0< r(< 1. Substituting (3.10) into (4.1) and taking 

into account that the singularities of functions Ei do not increase, we obtain 

J = 1 + y*k[-~&, 1 A /“-I + 0 (1)] -+ ~"0 (1 A I"-') + . . 

Since the index @ - 1 is negative, J becomes infinite on Co. If flp< 0, then J- +30 
and the Jacobian does not change its sign at the respective approach to the limit characteris- 
tic. 

*en E,,>of we have J-t---00, and the Jacobian changes its sign from plus to minus in 
the neighborhood of C,, which indicates the formation of a limit line. 

If lb= 1,then using (3.13) and (4.1) we obtain 

J = 1 +y’*f&r In I A I + 0 (f)1 +.@"O(fn I A if + . . . 

and the limit line is formed in this case at E,,>O, while being absent when fll<O. 
Let us now assume that ~>1. Then, as z-z,- 0, function!,(z) is of the form (3.12). 

From this &' (z) = 0 (i) and similarly Ei' (z) = 0 (1) i = 2, 3, . . . Hence in (4.1) the correctionsare 
small in comparison with the principal term which is equal unity, and the Jacobian does not 
change its sign on approaching C,. 

Summarizing the above results, we can state that the condition of formation of the limit 
line indicated by the first correction is 

orP<l, EN>0 (4.2) 

Analysis of the equation of the limit line J =O passes through the nozzle center. 

5. Inequality (4.2) determines some condition imposed on the quantities k,At,B1.of the 
Cauchy data (l-2), which is sufficient for generating in the stream of limit line. 

Let us first assume that in the Cauchy data (1.2) the exponent k assumes the following 
values: 

k > k, 6% = (1 - 0) 3/4 + oJ6/2) (5.1) 

It then follows from (5.1), (3.7), and (3.8) that p>land the limit lines is not formed 
when z-+2, -0. 

Let now k lies in interval O<k<kk,. 
If in the self-similar solutionfe'(z,-O)= Y&then index p is calculated by formula (3.8) 

and we have p > 1. If f,,' (~~-0) =yLzc,then p is calculated by formula (3.71 and satisfies the 
inequality 

(1 - Gl)/2 + 0 (15--5jCQio < p Q 1 

Thus, when exponent O< k<k, in the boundary condition (1.21, the derivative of the 
self-similar solution is f,P(~,-O)=ylzC and condition tn,> O(some inequality for A,, B,) is 
satisfied by the first correction, then, as z-+z, -0 a limit line is formed in the neighbor- 
hood of the characteristic c,. 
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A similar sufficient condition of limit line formation is valid d: s(‘ "he;: '-r;< i-0 
(with the Proviso that for O( k(k, the inequality E,,(O) is substituted for E,,;. (1 

6. Let us investigate perturbations of the several flow modes shown in Fig.1, whc,re :t,~ 

arrows denote approaches to Parabola P withf,'(z, i_O)=y,z,. Conclusions of the Preceding Sect 
enable us to consider these approaches as danqerous , since then the first approximation Ulri) 
disclose the appearance of a limit line. 

Here andsubsequentlywe assume thatO< k (k,. The case of k= k,, when a logarithmic sing- 

ularity propagates along C,, although qualitatively similar to the one considered here, re- 

quires separate investigation. 

When condition En,>0 is satisfied by the first correction, a limit line apPears &en 
z-+2_-Oin region 1. Let us rewrite the inequality E,,, ;, 0 using constant A, in the Cauchy 
data (1.2). 

Eliminating from system (3.5) function G,(z), we obtain for P,(z) the second order linear 
differential equation 

(49 - f&F," - l2z (1 + o k 4k) + Zf,,‘l F,’ + I(2 +- 2k) ,: (1 -t 2k k 0) - fo”I F, = 0 ( 6 : 1 

We pass in (6.1.) to the new independent variable T /o/ 

z - 8-I (1 f R) A, - 4-'fiA,r, R = 3 (1 -- o) + w r/s (6.2) 

For F, we obtain the hypergeometric equation with parameters a=-1 -k, b = - Ii,: --- 

w/2 - k, c = --R-1 14-yz - R) (1 .- 0) + 4k) .+ 21 /IO/. 

Formula (6.2) implies that the negative semiaxrs r is determined by r= +-w and the 

characteristic co- by T = 1. When z .-+ z_ - 0 , the variable r--+1 -:- 0. In conformity with the 

boundary condition (1.2) along the axis with T--t Wwe take function F, in the form 

F, = A, (?A,HI4)-"~(n, 4 .- 1 - r. il I- 1 - h; 7-1) (6.3) 

The analytic continuation of solution (6.3) to the neighborhood of r=lis of the form 

/lO/ 

F, = A, (tA,RI4)- lD,F (a, a I --- c. 1 -- ,,; 1 -- I-‘) -f D, (1 -- T-‘)“F (t - b, c - b, 1 1~: 1 - T-I)] (6.4) 

D, = r (a 1. 1 -- b)r (p):[r (1 - h)r (c - h)l, D? = 1‘(a 1 .- h) I‘ (-p)!fi’(a)T (a - 1 - c)l (6.51 

where p = c - a - b, which is consistent with c3.7). Using (6.4) we obtain the expansion of 

F, when T-..+ 1 i-0 

F, = A, (A,RI/o-“ID, : D, (r -- f),’ ~0(r -- f)l 

Comparing it with (3.6) and (3.11) we determine the coefficient F,,and then E,, 

f *‘W - . 4,(A,R/4)-w-0 D,;[(ti - 6,) 1 i f/r,<+_] 

The analysis of formulas :6.5) shows that in a plane fiow the coefficient D,<O for any 

k from the interval 0< k<“:,. In an axisytmnetric flowD,<OforO<k<l,D,>O for l<k< 

jm2, and D, = 0 for k= 1. Moreover we take into account that z_< 0. The sufficient condi- 

tion of limit line formation in region 1 can be expressed in the form 

Al > 0, 0 < k < “‘, (o = 0), A,>O.O<k<I:A,<O,l<k<~/:,iZ(o--I) (6.6) 

If A, = 0. then in region i F, = G, z 0, which implies that the question of lirlit I lines 

depends on the following approximation. When k= k,a logarithmic singularity reaches the 

nozzle center. When k= 1 the coefficient D,--0, hence the flow is analytic in region 1, in- 

cluding C,-, i.e. the limit line is not generated. 

Calculations show that a limit line which reaches the nozzle center cannot be eliminated 

by a compression shock. Hence conditions (6.6) define an inadmissible Cauchy problem. 

7. Let us investigate modes l-4 of nozzle operation with supersonic outlet velocity. 

As shown in Fig.1, the limit line in mode 1 can be formed in region 2 when z-r:_ i.0. Carrying 

out the same calculations, as in the preceding Sect., we conclude that the line of infinite 

accelerations appears under conditions 

(TE)H, + (M&4,> 0, 0 < k < k, (7.1) 

E =-_ I-(C)l--V) 
I-(a) I(b) 

[, _ sinn(r-a)sin;r(r -/I) 1 
Sin nn sin nb d 
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Q = r (-,q r (I - a) r (1 - b)/lr (1 + e - c) r (1 I b - c) r (P)] 

H = I? (a + 1 - b) I’ (p)/[J? (1 - b) l-’ (c - b)l 

T = r (a + 1 - b) r (1 - c)/K (a + 1 - c) r (1 - b)l 

It is possible to ascertain that (7.1) defines an inadmissible Cauchy problem with pertur- 
bations of the self-similar mode 1, since then the limit line reaches the nozzle center. As 

shown in Fig.1, the limit line does not appear in mode 2 when z-+Z_ +O, Z, -0, Z, +O. 
In mode 3 the line of infinite accelerations can be formed in region 2 when Z-+z+ -0, 

which takes place when condition 

(A,-"HEK_)A, +(B,-"TQK+)B, > 0, 0 < k<k, (7.2) 

K+=i4~*(2 + 2k)---ff,'(z+T O)liI4~(2+ ?.k)--ffO((zf$‘O)] 

is satisfied. In that case the limit line issues from the nozzle center. Calculations show 
that it can be eliminated by a compression shock. An example of flow in a Lava1 nozzle with 
a shock wave disclosed by the correction of the continuous self-similar solution is thus ob- 
tained. 

Consequently flows with acceleration in the direction of the nozzle outlet part (modes 1, 
2) remain shock-free when perturbations are small, 'except in the limit mode 3 with discontinui- 
ties of first derivatives of velocity components with respect to coordinates on both character- 
isticspassingthrough the nozzle center. 

Let us consider the perturbation of the self-similar mode 4. As shown in Fig.l,the limit 
line cannot appear when z-z_ +O. 

Let us investigate modes 5-9 of flows with local supersonic zones joined on the nozzle 
axis. The limit line in mode 5 is formed in region 2 when z+z_ +0 if the condition 

(AO- QH)A, + I(---B,)"HEK+lB,>O, O<k<k, (7.3) 

is satisfied. 
Infinite accelerations appear also in region 3 when z-z+ +0 if 

B, > 0, 0 < k < “i, (o = 0) 

B,> 0, O<k< 1; B,<O, 1 <k<l/S;iZ (w = I) 

(7.4) 

Calculations show that condition (7.3) defines an inadmissible Cauchy problem (1.2), and 
inequalities (7.4) represent the conditions of compression shock formation. 

As shown in Fig.1 the limit line in mode 6 can appear in region 3 when z--tz+ $0. The 
sufficient conditions for its formation are defined by inequalities (7.4). It can be eliminat- 
ed by the introduction of a shock wave. 

If the self-similar mode 7 is perturbed, the limit line may appear in region 3 when Z--, 
z+ +O. The sufficient conditions of its formation are defined by inequalities (7.4), and in- 
finite accelerations in region 2 occur when z +z+- 0 and the inequalities 

(A,-‘HEK_)A, i_ [(--B,)*QH] B, > 0, 0 < k < k, (7.5) 

are satisfied. 
When at least one of conditions (7.4) or (7.5) is satisfied, a shock wave appears in the 

flow. 
The condition rs<BJA,, <r, of shock-free self-similar flows in nozzles with LSZ obtained 

in /2/ is, thus, insufficient in the case of non-self-similar flow with velocity distribution 
along the axis of the form (1.2) forO(k<k,. Since perturbation of any self-similar mode 5- 
7 may result in the formation of a compression shock (for which fulfillment of (7.4) is suffic- 
ient) hence in non-self-similar LSZ flows joined on the nozzle axis, a shock wave may appear 
independently of whether the position of the channel throat is down-stream of its center or 
not. 

8. Let US show how to construct the shock wave generated by the correction of the contin- 
uous self-similar solution (2.2). For definiteness we shall consider perturbation of the self- 
similar mode 6 under conditions (7.4). 

In the uniformly valid solution (3.1) a. V. 5 are functions of variables Let us 
consider function <(z,y) in the neighborhood of characteristic 

z, y. 
C,‘, using expansion (3.1) , 

(3.10), and (3.12). We have 



492 A.L. Brezhnev and I.A. Chernov 

5 = 2 + Y*‘Is,, +0(A)]+. . s-es, -0 <ii.:; 
i=z +~*~~!.~a +t,,,,A"+O(A)]+... i-+z+ ;o 

iic.2) 
where fA = z - z+) 

b The dependence of i on variable I at some Sflldll 

5 u 

~~ 

fixed Y is qualitatively shown in Fig.Za in the form of 
curves. Line l-6-2 represents function ~(z,Y) defined 

6 2 
f by (8.1). Curve 2- 5 corresponds to function ~(2,~) in 

(8.2) when Eu,>'J and no limit line is formed in the 
2 0 

' 3 
neighborhood of Co'. The curve 2-3-7-4 represents 

7 7 form of function (8.2) when E,,<o, point 3 corresponds 

3 2 gz 
to the limit line, and point 2 represents the limit 
characteristic C,,*. Segment 6-7 represents the com- 
pression shock which in the case of E,,<O separates the 

Fig.2 region of three-valuedness. The curve in Fig.2.b shows 
the qualitative dependence of the longitudinal component 
of perturbation velocity y on variable 5 at fixed y. 

Prior to proceeding with the construction of the compression shock, we seek an equation 
of the limit line of the form z=z,(y). Since it differs from characteristic C,+ by higher 
order smalls, t/(Y) can be expanded in series in powers of y with t, as the principal term 

2 = 21 (y) = 2, + pl -+-. . . (8.3) 

where a,1 are the unknown constants, for whose determination we substitute it into the limit 
line equation at/& = 0. We obtain tz = 2k!(l - y), 1 = (- ~&,,,)l'(i-fi). 

If in the uniformly valid solution (3.1) the exponent 2ki of y is smaller than a, the 
respective coefficients at yxLi: fi (2)‘ g, (2). Ei ( ) I must be continuous at point Z- z+. For this 
order the boundary of regions 2 and 3 remains the characteristic c,+. If exponent 2ki in 
(3.1) satisfies the inequality 2ki >a, then regions 2 and 3 must be connected by a compares- 
sion shock in order to eliminate the limit line. 

The forward front of the shock is represented in Fig.2 by point 6 whose equation is of 
the form 

2 = z* (y) = 2, t y=s, +... (8.4) 

where s, is to be determined. 
The rear front of the shock is represented in Fig.2 by point 7 and is defined in the 

form of expansion 

2 = 23 (y) = z, c YQS, + . . (8.5) 

where ss is the unknown constant. 
Substituting (8.4) and (8.5) into (3.1) we obtain expressions for functions U and U at 

the shock wave forward and rear fronts. Then, using the shock transition (1.3), we obtain for 

the unknown Sy,Sz the system of equations 

whose solution is 

SQ = 1--2/l (1 -t ~)-&J1'('-~), s* = (P - 1)(2p)_‘s, 

~0 construct the shock wave with terms higher than p taken into aCCOUnt it is necessary 

t0 include in expansions (3.1) in region 3 behind the shock the terms P"', p'd, a.. . The 

calculation of the velocity jump yields 

u, - ul: = -16 (1 - o) + 4)/5dz+s1y*+= + 0 (y’+o+‘~ 

The authors thank S.V. Fal'kovich for discussing this problem 
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